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A new method is reported for the preparation of indolo[2,3-a]quinolizidines based on radical cyclization
of a 2-acyl-1-phenylthiotetrahydro-b-carboline bearing a pendent a,b-unsaturated ester. The required
radical cyclization precursor is efficiently assembled from E-5-ethoxycarbonyl-4-pentenoic acid and
3,4-dihydro-b-carboline through a DCC/HOBt-activation/N-acylation and BF3�Et2O/PhSH iminium-ion
trapping sequence. Tin-mediated radical cyclization of the radical cyclization precursor affords stereose-
lectively a cis-lactam (dr = 7:1) in good yield (81%), bearing the correct D/E ring fusion stereochemistry
for the Tacaman alkaloids. The methodology has been applied to formal syntheses of the indoloquinolizi-
dine alkaloids, (±)-eburnaminol and (±)-larutensine.

� 2009 Elsevier Ltd. All rights reserved.
The indolo[2,3-a]quinolizidine framework 1 (Fig. 1) is a struc-
tural motif found within numerous natural products of varying
structure and biological activity, including alkaloids such as the
architecturally interesting (+)-Na-methylvellosimine (2) and the
well-known reserpine (3).1 In addition to its importance within
Nature’s structural palette, this scaffold continues to present
medicinally relevant leads for potential therapies against a range
of diseases.2

Thus, given the significance of the indoloquinolizidine core in
natural and clinical arenas alike, many methods have been
developed for its preparation, including Bischler–Napieralski,3 Pic-
tet–Spengler,4 Fischer indole synthesis5 and vinylogous Mannich6

approaches, as well as strategies based on formal aza-[3+3]-7 and
[3+2]-carbonyl ylide8 cycloadditions. The Pictet–Spengler reaction
has historically been particularly popular, and recently has been
developed into synthetically useful asymmetric variants based on
the use of tryptophan-derived substrates4a–c or asymmetric organ-
ocatalysis.4d–g

Despite these advances, indoloquinolizidine synthesis in the con-
text of the pentacyclic alkaloids of the Eburnamine–Vincamine and
Tacaman families (general framework, 4, Scheme 1) has often suf-
fered from low levels of stereocontrol. For this reason, we set out
to develop a stereoselective method that would be particularly use-
ful in accessing indoloquinolizidines of this type, specifically in the
context of a total synthesis of the indole alkaloid tacamonine (5).9

Our planned method involved a novel disconnection10 of the
C3–C14 bond (tacamonine numbering) of the indoloquinolizidine,
ll rights reserved.

).
which we aimed to instal via a 6-exo-trig cyclization of a benzylic
a-acylamino radical11 7, itself generated from 2-acyl-1-phenyl-
thiotetrahydro-b-carboline 8 (Scheme 1).

Herein we describe the development of the aforementioned
method, and apply it to a brief formal synthesis of the Eburn-
amine–Vincamine alkaloids, (±)-eburnaminol and (±)-larutensine.

Our work began with the synthesis of the radical cyclization
precursor 8. As shown retrosynthetically in Scheme 1, we sought
to assemble 8 from acid 9 and 3,4-dihydro-b-carboline12 (10). From
the outset, we envisaged achieving this N-acylation/iminium-ion
Figure 1. The indolo[2,3-a]quinolizidine framework 1 and examples of indolo-
quinolizidine natural products.



Scheme 1. Retrosynthesis of (±)-tacamonine (5) and general framework of the Tacaman and Eburnamine–Vincamine alkaloids (4).
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trapping sequence under mild conditions, since this would allow
for the potential use of sensitive acids bearing a-stereocentres
(cf. structure of tacamonine, 5). Mindful of these requirements,
we began our search by exploring DCC/HOBt-activation of the acid,
followed by Nb-acylation and low temperature BF3�Et2O-mediated
interception of the iminium ion with thiophenol in a one-pot
sequence (DCC = N,N0-dicyclohexylcarbodiimide, HOBt = 1-hydro-
xybenzotriazole).

Our initial studies were carried out on the model acids, acetic
and heptanoic acids. In the event, treatment of these acids
(1.2 equiv) with DCC (1.2 equiv) and HOBt (1.2 equiv) at 0 �C, fol-
lowed by addition of 10 (1.0 equiv) and subsequent exposure to
PhSH (1.3 equiv) and BF3�Et2O (1.3 equiv) at �78 �C, cleanly affor-
ded the corresponding a-sulfanyl amides as a mixture of rotamers
(acetic, 11: �1.6:1; heptanoic, 12: �2.8:1) in good yield following
chromatography (Scheme 2).13 Indoles 11 and 12 could subse-
quently be N-Boc-protected [Boc2O (1.3 equiv), DMAP (0.1 equiv),
THF, RT] in near quantitative yield to give 13 and 14, respectively.

Thus, with a reliable method in place, the preparation of 8 could
be attempted. Acid 9 was prepared from 4-pentenoic acid (15)
through a high-yielding ozonolysis/Horner–Wadsworth–Emmons
sequence (80%, E:Z = 13:1; Scheme 3).14 Thereafter, the coupling
of 9 (1.0 equiv) with 3,4-dihydro-b-carboline (10) (1.2 equiv) pro-
ceeded smoothly, affording after treatment with benzenethiol the
sulfanyl amide 17 in 88% yield (3 mmol scale) in a manner that
was easily scalable (14 mmol: 83%). As before, indole N-Boc protec-
tion15 proceeded in essentially quantitative yield to furnish 8 as a
mixture of rotamers (�3.1:1) about the amide bond.16
Scheme 2. Model a-sulfanyl amide synthesis.
With 8 in hand, we next investigated the key radical cyclization.
Subjecting 8 to standard radical cyclization conditions [n-Bu3SnH
(3.0 equiv), ACCN (0.1 equiv), degassed PhMe (0.02 M), reflux]
gratifyingly resulted in the consumption of starting material and
formation of more polar products [ACCN = 1,10-azobis(dic-
yclohexylcarbonitrile)]. Careful chromatography of this mixture
revealed the major component to be the desired cis-lactam (cis-6,
51%, Scheme 4),17 accompanied by a smaller amount of the
trans-isomer (trans-6, 15%)17 and radical reduction product (18,
20%). After further optimization, we found, as expected, that con-
ducting the reaction under more dilute conditions (0.01 M), lower-
ing the equivalents of n-Bu3SnH (1.5 equiv) and slowing the
addition of the n-Bu3SnH/ACCN/PhMe solution (over 1.5 h), all
resulted in a decrease in the amount of reduction product (down
to 6%), together with an increase in the yield and diastereoselectiv-
ity (cis:trans = 81%:12%) (Scheme 4).

The structures of cis- and trans-6 were assigned on the basis of 2D
NMR experiments (COSY, HSQC, NOESY and HMBC), with key stereo-
chemical information being afforded by the cross-peak obtained in
the NOESY spectrum of cis-6 between H-3 (d 5.39) and H-14 (d
3.23). Unfortunately, signal overlap in the 1H NMR spectrum of
trans-6 precluded the use of a similar NOESY experiment to show
the absence of this cross-peak in the trans-isomer. Moreover, the
coupling constants between these two protons yielded little infor-
mation, as in both isomers, the J values were small and very similar
[JH3–H14 (cis) = 2.0 Hz; JH3–H14 (trans) = 1.8 Hz], indicating significant
distortion from the chair-like conformers. Thus, with the NMR data
unable to confirm the stereochemistry of the major isomer, we
sought definitive proof in the form of an X-ray crystal structure
determination. While this was not possible for cis-6 (formed as a
gum), its saponification [LiOH (2.5 equiv), THF/H2O (3:1), 76%]
yielded the crystalline acid 19, which could be recrystallized from
MeOH to provide crystals suitable for a single crystal X-ray determi-
nation. The X-ray structure18 (Fig. 2) clearly confirms the desired cis-
arrangement of H-3 and H-14.

The observed diastereoselectivity in the radical cyclization can
be rationalized by examining the possible transition states leading
to each isomer (Fig. 3). Assuming reasonably that the larger indole
substituent at the reacting radical centre adopts a pseudoequatori-
al position in the transition states, cis-6 would arise from one in
which the enoate ester group adopts a pseudoaxial orientation
(TS-1), while in the transition state leading to trans-6 this group



Scheme 3. Preparation of radical cyclization precursor 8.

Scheme 4. Radical cyclization of 8.

Figure 2. X-ray crystal structure of acid 19 showing the cis-arrangement of H-3 and
H-14.
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would be pseudoequatorial (TS-2). In the latter orientation, the es-
ter suffers significant steric interaction with the bulky N-t-butoxy-
carbonyl group, which destabilizes TS-2 and thereby disfavours the
formation of trans-6; TS-1, on the other hand, avoids such clashing
and for this reason cis-6 predominates.19
Having established the requisite stereochemistry to be in place
for (±)-tacamonine, we sought to demonstrate the utility of cis-6 in
a short formal synthesis of the natural products, eburnaminol (20)
and larutensine (21) (Scheme 5). These two Eburnamine–Vinca-
mine alkaloids were isolated20 in 1991 from Kopsia larutensis and
had previously been synthesized by Lounasmaa and Karvinen from
indoloquinolizidine ester 22 in six and seven steps, respectively.21

Thus, lactam 6 was converted through a three-step sequence (final
two steps unoptimized) into 22. First, the N-Boc group of 6 was re-
moved by treatment with TFA in the presence of thioanisole as a
cation scavenger to give free indole 23 in excellent yield (93%)
(Scheme 5). Thereafter, conversion of 23 into thiolactam 24 was
achieved with Lawesson’s reagent (64%), and which was then re-
duced with excess Raney Nickel (77%) to deliver 22. The spectral
data (1H, 13C, IR and HRMS) of 22 were in good agreement with
those reported by Lounasmaa, except that the melting point of
our material differed significantly from that reported by Husson
et al.,22 although the solvent used in their case was different from
ours [120–124 �C (EtOAc/hexanes); lit. mp: 160 �C (benzene/
hexane)22].

In summary, we have developed an efficient method for the
preparation of indolo[2,3-a]quinolizidines that is particularly



Scheme 5. Formal syntheses of (±)-eburnaminol (20) and (±)-larutensine (21) via 22.

Figure 3. Proposed transition state model for the observed stereoselectivity (X = CO2Et).
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applicable to the synthesis of pentacyclic alkaloids of the Tacaman
family. Our method involves a high-yielding assembly of the
required radical cyclization precursor using a mild DCC/HOBt-acti-
vation and BF3�Et2O/HSPh iminium-ion trapping sequence, as well
as an n-Bu3SnH-mediated radical cyclization that is selective for
the desired cis-isomer. From this cis-product, the formal syntheses
of (±)-eburnaminol and (±)-larutensine were completed through
the preparation of a common indoloquinolizidine intermediate.
Efforts to expand the scope of this method and apply it to a racemic
total synthesis of tacamonine are underway in our laboratory, and
will be reported in due course.
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